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We present a fluid-particle model for a polymer solution in nonisothermal situations. The state of the fluid
particles is characterized by the thermodynamic variables and a configuration tensor that describes the under-
lying molecular orientation of the polymer molecules. The specification of very simple physical mechanisms
inspired by the dynamics of single polymer molecules allows one, with the help of the general equation for
nonequilibrium reversible-irreversible coupling �GENERIC� formalism, to derive the equations of motion for
a set of fluid particles carrying polymer molecules in suspension. In the simplest case of Hookean dumbbells
we recover a fluid-particle version of the Oldroyd-B model in which thermal fluctuations are included consis-
tently. Generalization to more complex viscoelastic models, such as finitely extensible nonlinear elastic Peterlin
�FENE-P� model, with the proper introduction of thermal fluctuations is straightforward.
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I. INTRODUCTION

Microrheology is an experimental optical technique that
probes the viscoelastic response of a fluid by optically mea-
suring the Brownian motion of suspended colloidal particles
�1,2�. In these experiments, the mean-square displacement
during the diffusion of tracer colloidal particles is recorded
and, through a generalized Stokes-Einstein relation, the vis-
coelastic properties of the medium are inferred. The tech-
nique allows one to probe local viscoelasticity in tiny �pi-
coliter� quantities of fluids �3�. This has opened up the
extensive use of microrheological techniques in the study of
the mechanical response of biological fluids and living cells
�4,5�.

There are a number of questions to address in the tech-
nique, starting from the very initial assumption about the
generalized Stokes-Einstein relation �6�. Simulations of vis-
coelastic fluids with well-known rheological behavior with
colloidal particles immersed may give insight and further
support to this relation. Note that the generalized Stokes-
Einstein relation assumes the fluid to behave in the linear
viscoelastic regime, and it may be interesting to probe the
nonlinear regime also. Also, because the size of the samples
used is very small �in the micron scale�, viscoelastic hydro-
dynamic interactions with container walls are expected to
play a role that should be appropriately quantified. Finally,
questions on the effect of other probe colloidal particles on
the measurement of a single colloidal particle may arise also.

A simulation technique for these types of problems �i.e.,
colloidal particles immersed in a confined viscoelastic fluid�
requires the consideration of thermal fluctuations which are
the ultimately responsible for the diffusion of the colloidal
particles. There are not many simulation techniques that
have considered the introduction of thermal fluctuations in
viscoelastic fluids. Lattice Boltzmann, which has been gen-
eralized to include thermal fluctuations in the Newtonian
case �7�, has also been generalized to describe viscoelastic
behavior �8�, but without thermal fluctuations. Dissipative
particle dynamics �DPD� �9,10� is a natural method for deal-

ing with the simulation of polymers in which thermal fluc-
tuations are naturally incorporated. DPD is closely related to
the smoothed particle hydrodynamic �SPH� technique �11�.
In these particle methods, a polymer may be modeled by
joining fluid particles with springs �12,13�. The resulting
fluid displays nontrivial rheological behavior �14�. One may
want to model the polymeric fluid at a more coarse-grained
scale by introducing for each fluid particle a vector describ-
ing the average end-to-end vector of polymer molecules that
are within the fluid particle �15,16�. The resulting model is
closely related to the Brownian configuration-field approach
�17�, and is the discrete counterpart of a continuum theory
using the hydrodynamic fields and the space-dependent dis-
tribution function for the end-to-end distance of polymer
molecules as relevant variables �18�. The Brownian configu-
ration-field approach, like the calculation of non-Newtonian
flow: finite elements & stochastic simulation techniques
�CONNFFESSIT� approach �19�, is intrinsically stochastic
and requires the averaging of many configurations in order to
obtain smooth macroscopic results, thus increasing the com-
putational resources required.

In the present paper, we formulate an even more coarse-
grained fluid-particle model, in which the state of the poly-
mer molecules within a fluid particle is represented by a
conformation tensor �18�. The conformation tensor may be
thought of as the second moment of the end-to-end distance
distribution function. The motivation to consider the confor-
mation tensor is that we will obtain a model in which thermal
fluctuations may be controlled by the specific selection of the
size of the fluid particles �20�. Also, rather than using con-
stitutive equations for the extra elastic stress, the use of the
conformation tensor, which is directly connected to micro-
scopic quantities, allows for a natural introduction of thermal
fluctuations in the model. In the model presented in this pa-
per, when the underlying polymer molecules can be modeled
by Hookean dumbbells, the resulting fluid-particle model
corresponds to a smoothed particle hydrodynamic discreti-
zation of the well-known Oldroyd-B model for viscoelastic
fluids. Note, however, that more realistic models can be en-
compassed in the present formulation just by appropriate
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definition of the conformation-tensor-dependent entropy of
the fluid particles. Oldroyd-B model of viscoelasticity is per-
haps the simplest model describing nonlinear rheological be-
havior. It can be derived either from kinetic theory �21� or
from more phenomenological approaches �18�. The model
has also been simulated with a number of different compu-
tational fluid dynamics techniques �22�, including SPH
�23,24�. Being one of the simplest nontrivial model for non-
linear rheology, with known rheological behavior, it seems
the most appropriate for studying the microrheology issues
described above. Also, the modelization of the Oldroyd-B
model in terms of fluid particles instead of simply discretiz-
ing the well-known continuum equations with, for example,
finite-difference or spectral methods, allows for a simple in-
troduction of thermal noise with clear physical meaning. The
formulation of a general fluid-particle viscoelastic solver
valid for dilute polymer solutions with thermal fluctuations
included consistently is a first step toward computational mi-
crorheology.

II. NONISOTHERMAL PARTICLE MODEL
FOR DILUTE POLYMER SOLUTIONS

We model a polymeric solution through a collection of M
fluid particles with positions ri and velocities vi which are
understood as representing real portions of the material.
They are regarded actually as small thermodynamic sub-
systems that move following the flow. The fluid particle la-
beled i contains Ni

p polymer molecules as schematically
shown in Fig. 1. We will characterize the state of the elon-
gation of the polymer molecules within the fluid particle with
a dimensionless conformation tensor defined by

ci =
1

Npq0
2�

a

Np

qaqa, �1�

where qa is the end-to-end distance of the ath polymer mol-
ecules within the fluid particle i. The tensor has been normal-
ized with q0 in such a way that the equilibrium value of the
conformation tensor is ci=1.

In order to formulate the dynamics of the conformation
tensor we may resort to the more refined level of description
in which the dynamics of the polymer molecules is resolved.
For simplicity, the polymer molecules will be represented by
dumbbells. The positions of the first and second beads of
dumbbell a are ra

1 and ra
2, respectively. In the overdamped

limit, its evolution is given by the Langevin equations

dra
1 = V�ra

1�dt +
1

�
F�ra

1 − ra
2�dt + �2D0�1/2dWa

1,

dra
2 = V�ra

2�dt +
1

�
F�ra

2 − ra
1�dt + �2D0�1/2dWa

2. �2�

Here, V�r� is the flow velocity field. We assume that within
the fluid particle we have a homogeneous flow field given by
V�r�=vi+�i ·r, where vi is the velocity of the fluid particle
and �i= ��v�i is the velocity gradient tensor within the fluid
particle. The force due to the spring connecting the two
beads is F�ra

2−ra
1�. The friction coefficient is �=6��a, with

a as the bead radius and � as the solvent shear viscosity. The
stochastic forces are proportional to the diffusion coefficient
D0 of the beads, given by the Stokes-Einstein relation D0
=kBT /�, while dW is a vector independent increment of the
Wiener process. Note that in Eq. �2� we assume that different
polymer molecules do not interact with each other, which is
true in the dilute limit.

By changing to center of mass Ra= �ra
1+ra

2� /2 and relative
coordinate qa=ra

1−ra
2 variables, we have

dRa = 1
2 �V�ra

1� + V�ra
2��dt + dR̃a,

dqa = �i · qadt +
2F�qa�

�
dt + dq̃a, �3�

where the noise terms are defined by

dR̃a = �2D0�1/2dWa
1 + dWa

2

2
,

dq̃a = �2D0�1/2�dWa
1 − dWa

2� , �4�

and their variances are given by

dq̃adq̃b = �ab4D01dt ,

dR̃adR̃b = �abD01dt ,

dq̃adR̃b = 0. �5�

We may now use the evolution of the dumbbells as described
in Eq. �2� in order to obtain the evolution of the conforma-
tion tensor c. By using stochastic calculus �i.e., expanding to
second order in dq̃a� to obtain the stochastic variation in the
configuration tensor defined in Eq. �1�, we arrive at

dc =
1

Npq0
2�

a

Np

�qadqa + dqaqa + dqadqa� , �6�

where we have suppressed, for easiness of notation, the
fluid-particle index.

FIG. 1. �Color online� A fluid particle contains Np polymer mol-
ecules and has a conformation tensor c.
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By using the last equation in Eq. �3�, we can write

dc = �c · �T + � · c�dt +
1

Npq0
2�

a

Np �qa
2F�qa�

�
+

2F�qa�
�

qa

+ 4D01�dt + dc̃ , �7�

where the noise in the configuration tensor is defined by

dc̃ =
1

Npq0
2�

a

Np

�qadq̃a + dq̃aqa� . �8�

The stochastic properties of this noise dc̃ are basically given
by the second moments, which can be computed easily from
Eqs. �8� and �4�, with the result

dc̃��dc̃���� = dt
1

Np�
�c������� + c�������

+ c������� + c�������� , �9�

where the relaxation time is defined as ��q0
2 /4D0.

Dynamic equation �7� for the conformation tensor has
three contributions. The first two terms involving the veloc-
ity gradient tensor � describes how the tensor is advected
and is a purely reversible process. It results in the well-
known upper-convected evolution of the conformation ten-
sor. The next term in Eq. �7�, which involves the friction
coefficient �, is an irreversible contribution. This irreversible
term is not expressed in terms of c and, therefore, Eq. �7� is
not a closed stochastic differential equation for the configu-
ration tensor. This is a general theme of coarse-graining a
detailed level of description: given detailed dynamics of the
fine degrees of freedom, the dynamics of a coarse-grained
function of these fine degrees is not closed in general and a
closure is necessary. For example, given Hamilton’s equa-
tions, the kinetic equation for the distribution function is
given in terms of the Bogoliubov-Born-Green-Kirkwood-
Yvon �BBGKY� hierarchy that must be closed with some
approximation. The route we choose in the present paper in
order to close the dynamic equation for the conformation
tensor is to resort to the general equation for nonequilibrium
reversible-irreversible coupling �GENERIC� framework,
which is ultimately based on a closure through a Markovian
approximation �25�.

Nevertheless, note that for the Hookean dumbbell model,
for which the spring law is linear, F�q�=−Hq, with H as the
spring constant, we do have a closed equation for c,

dc = �c · �T + � · c�dt +
1

�
�1 − c�dt + dc̃ . �10�

For Hookean dumbbells, the equilibrium dumbbell length is
q0=	kBT /H and the relaxation time is �=� /4H.

III. GENERIC FORMULATION

In order to construct the fluid-particle model, we will re-
sort to the GENERIC framework �18�, which has proved to

be a very useful tool in order to formulate fluid-particle mod-
els in a thermodynamically consistent way �11,26�.

The first step in the GENERIC formulation is the specifi-
cation of the state variables. In the present model, to each of
the M fluid particles that compose the system we associate
the independent variables ri, vi, Ei, and ci which will char-
acterize the state of the fluid. The internal energy Ei repre-
sents the contributions of kinetic energy of the solvent and
bead particles with respect to the center of mass of the fluid
particle plus the potential energy of interaction �including
solvent-solvent, solvent-bead, and bead-bead interactions�.
Note that we assume that each fluid particle has a constant
number Np of polymer molecules. A more general model can
be constructed in which this number is also a variable, which
may evolve due to diffusion of polymer molecules from one
fluid particle to another �16�. However, in the present paper,
and for the sake of simplicity, we assume that this diffusion
can be neglected. Each fluid particle has also associated a
volume, which is not an independent variable but rather de-
pends on the positions of the given particle and its neighbors.
In the SPH and smoothed dissipative particle dynamics
�SDPD� philosophy �11�, one provides a volume Vi to each
particle through the inverse of a density di, which is defined
by

1

Vi
= di = �

j

W�rij� . �11�

Here, rij = 
ri−r j
 and W�r� is a bell-shaped function of finite
support rc and which is normalized to unity,

� drW�r� = 1. �12�

In this work a quintic spline kernel as in �24� was used,

W�s� = w0�
�3 − s�5 − 6�2 − s�5 + 15�1 − s�5, 0 	 s 
 1

�3 − s�5 − 6�2 − s�5, 1 	 s 
 2

�3 − s�5, 2 	 s 
 3

0, s � 3,


�13�

where s=r /h and w0=7 /478�h2 in two dimensions �2D�.
Note that if particle i has many neighboring particles within
rc=3h, then the density di in Eq. �11� will be large. Consis-
tently, we associate a smaller volume Vi to it.

Finally, every fluid particle �i.e., thermodynamic sub-
system� has associated an entropy function Si�Ei ,ci ,Vi�. The
microscopic definition of this entropy function is given by
the logarithm of the “number of microstates” which are com-
patible with prescribed values of Ei and ci �18�. In more
precise terms,

S�E,c,V� = kB ln� dz��H�z� − E���c�z� − c� , �14�

where z is the set of microscopic degrees of freedom �posi-
tions and velocities of the solvent molecules and beads�,
H�z� is the Hamiltonian of the system, and c�z� is given in
Eq. �1�. If the Dirac delta function on c was not present, Eq.
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�14� would be the equilibrium thermodynamic entropy of the
system. The introduction of this additional delta functionar-
ises from our requirement of describing the system at a more
refined level, through the conformation tensor c.

The full state of the system is thus characterized by the
variables x= �ri ,vi ,Ei ,ci , i=1, . . . ,M�. The total energy of
the system is given by

E�x� = �
i

M
m

2
vi

2 + Ei. �15�

Here, Ei must be understood as the total internal energy of
the fluid particle, including elastic contributions from the
suspended polymer molecules. The total entropy of the sys-
tem will be

S�x� = �
i

S�Ei,ci,Vi� . �16�

Note that the entropy of the full system is defined as the sum
of the entropies of each fluid particle taken as thermody-
namic subsystems, that is, by the sum of function �14� evalu-
ated at Ei, ci, and Vi. This is the well-known local equilib-
rium assumption. The particular functional form of
S�Ei ,ci ,Vi� will be discussed later on.

For future reference we present here the derivatives of the
energy and entropy functions with respect to the state vari-
ables,

�E

�x
=�

0

mv j
�

1

0���
�,

�S

�x
=�

�
k

� jk
� Pk

dk
2Tk

0

1

Tj

� j
���

Tj

� . �17�

We have introduced the equations of state of the fluid particle
as the derivatives of the entropy with respect to its variables,
that is,

P

T
=

�S

�V
,

1

T
=

�S

�E
,

�

T
=

�S

�c
. �18�

Here, T is the temperature, P is the pressure, and � is the
tensorial variable thermodynamically conjugated of c. Note
that, as a consequence of the dependence of the entropy on
the conformation tensor c, the temperature and the pressure
will also depend in general on the conformation tensor. In
Eq. �17� we have introduced the vector

�ij = −
�dj

�ri
= �ij + �ij�

k

�ik, �19�

where

�ij = − W��rij�eij . �20�

Here, the prime denotes derivative and eij =
ri−r j


ri−r j

is the unit

vector joining particles i and j. The function −W��r��0 is
positive. The vector �ij is a purely geometric object that
depends only on the positions of the fluid particles.

A. Reversible part of the dynamics

In this section, we formulate the reversible part of the
dynamics for the set of variables x. According to GENERIC,
the reversible part of the dynamics is given by �see Eq. �A1�
of Appendix A�

ẋ
rev = L
�E

�x
, �21�

The reversible part of the dynamics represents purely kine-
matic effects on the evolution of the variables. We wish that
the reversible part of the dynamics produces the following
equation of motion for the positions of the fluid particles:

ṙi = vi. �22�

A second requirement for L comes from our desire that it
describe the reversible upper-convected dynamics we have
encountered in Eq. �7�, which we write in component form
as

ċi
���
rev = ci

�����v���i + ci
������v��i, �23�

where Greek indices �, �, and �� represent Cartesian coor-
dinates and Einstein summation rule is applied over repeated
indices.

We now obtain a form for ��v�i by following the SPH
philosophy. We interpolate the velocity field according to

v�r� =

�
j

W�r − r j�v j

�
j

W�r − r j�
. �24�

By taking the gradient of this expression we obtain

�v�r� =

�
j

�W�r − r j�v j

�
j

W�r − r j�
− v�r�

�
j

�W�r − r j�

�
j

W�r − r j�
. �25�

Therefore, at particle i we have the approximate expression

��v��ri� =
1

di
��

j

��W�rij�v j
� − v��ri��

j

��W�rij��
�

1

di
�

j

�ij
� vij

� =
1

di
�

j

� ji
� v j

�, �26�
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where vij =vi−v j and ij and �ij are defined in Eqs. �19� and
�20�. By inserting this discrete form �26� into Eq. �23�, we
can write

ċi
���
rev = �

j

�ij
����v j

�, �27�

where we have introduced the following third-order tensor
for every pair i , j of particles:

�ij
���� =

1

di
����ci

���� + ����ci
����� ji

��. �28�

This tensor is symmetric with respect to the first two indices
� and ��, and there is a sum over the repeated index ��.

The simplest nontrivial reversible dynamics that produces
the above Eqs. �22� and �27� has the following form:

�
ṙi

v̇i
�

Ėi

ċi
���
�


rev

= �
j

Lij�
0

mv j
�

1

0���
� , �29�

where the block Lij has the structure

Lij =
1

m�
0 ����ij 0 0

− ����ij 0 �ij
� − � ji

����

0 − � ji
� 0 0

0 �ij
���� 0 0

� . �30�

The first and fourth rows of Lij ensure the equations of mo-
tion �22� and �27�. The first and fourth columns are fixed by
antisymmetry of L. The only term that remains to be speci-
fied in the matrix L is �ij

�. This term is determined by the
degeneracy requirement that L �S

�x =0, which physically en-
sures that the reversible part of the dynamics does not change
the entropy of the system. This degeneracy condition takes
the following form in the present case:

�
0

0i
�

0i

0i
���
� = �

j

Lij�
�

k

� jk
� Pk

dk
2Tk

0

1

Tj

� j
���

Tj

� . �31�

The only nontrivial term comes from the second row of L,
which leads to

�
j
�− �ij

� Pj

Tjdj
2 + �ij

� 1

Tj
−

� j
���

Tj
� ji

����� = 0. �32�

A simple selection for �ij
� that satisfies this equation is

�ij
� = �ij

� Pj

dj
2 + � j

���� ji
����. �33�

By inserting into Eq. �33� expression �28� we arrive at

�ij
� =

1

dj
2� j

����ij
��, �34�

where the reversible part � j of the stress tensor of the fluid
particle j is

� j = Pj1 + 2dj� j · c j . �35�

We show in Eq. �B4� of Appendix B that � j ·c j =c j ·� j and,
because � j and c j are both symmetric tensors, it follows that
the reversible stress tensor � j is itself symmetric.

Now that we have an explicit expression for all the ele-
ments of the matrix L, we can perform the matrix multipli-
cation in Eq. �29� and obtain the reversible part of the equa-
tions of motion for the relevant variables. They are

ṙ
rev = vi,

mv̇i
�
rev = �

j
��i

��

di
2 +

� j
��

dj
2 ��ij

� ,

Ėi
rev = −
�i

��

di
2 �

j

�ij
� vij

�,

ċi
���
rev =

ci
��

di
�

j

�ij
� vij

�� +
ci

���

di
�

j

�ij
� vij

�. �36�

It is a simple exercise to check that total momentum is
conserved �due to the symmetry �ij =−� ji�. Total energy and
entropy are conserved exactly by these equations, as a con-
sequence of their GENERIC structure.

Let us summarize now the line of reasoning followed in
this section. We have assumed a particular equation of mo-
tion for the conformation tensor ci given in Eq. �23� or, more
explicitly, in the last equation of Eq. �36�, which is the SPH
version of the upper-convected evolution for ci. In the revers-
ible matrix L this dynamics is captured by the matrix ele-

ments �ij
���� in the last row of Eq. �30�. The degeneracy

condition L �S
�x =0 allows us to fix the remaining undetermined

element �ij
� of L. As a result, we have been able to identify a

reversible part of the stress tensor �i
��, which depends on

the configuration ci of the polymer molecules. In other
words, the requirement that the reversible part of the dynam-
ics does not produce an increase in entropy enforces the form
of the stress tensor.

B. Irreversible part of the dynamics

As shown in Appendix A, in order to derive the irrevers-
ible part of the dynamics of a system, a very useful route is
to first postulate the thermal noises dx̃ and afterward com-
pute the dissipative matrix M through the fluctuation-
dissipation theorem,

M =
dx̃dx̃T

2kBdt
. �37�

This procedure ensures that M defined through Eq. �37� is
automatically symmetric and positive semidefinite, which are
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two essential properties of the dissipative matrix M. One
should note that, in principle, it would be easier to simply
postulate the form of M in order to have a physically sensible
set of equations. However, we would still have the problem
of finding out the explicit form of thermal noises that fulfill
fluctuation-dissipation theorem �37�. This would involve
computing the square root in matrix sense of M, which might
be difficult to perform.

We postulate the following form for the thermal noises

dx̃= �0 ,dṽi ,dẼi ,dc̃i�. Note that we do not assume any ther-
mal noise for the position of the fluid particles, as we want to
respect the kinematic equation of motion ṙi=vi. In Ref. �11�
we discussed how to introduce the thermal noises dṽi and dẼi
in order to recover a matrix M which produces an irrevers-
ible part of the dynamics that can be understood as a
smoothed particle hydrodynamic discretization of the irre-
versible terms of the Navier-Stokes equations. We simply
borrow from �11� the forms of these noises. Note that in �11�
we used the entropy as independent variable, as opposed to
the internal energy. This means that we have a stochastic

term dS̃i, instead of a stochastic term dẼi. The connection,

however, is trivial, dẼi=TidS̃i. In this way, we have

mdṽi = �
j

AijdWij · eij ,

dẼi = �
j

CijdVij − �
j

Aij

2
dWij:eijvij , �38�

where

dWij = 1
2 �dWij + dWij

T� . �39�

In this expression we have introduced, for each pair i , j of
particles, a matrix of independent increments of the Wiener
process, dWij. In Eq. �38� we have also introduced an inde-
pendent increment of the Wiener process for each pair of
particles, dVij. This last term will give rise to the heat con-
duction terms in the energy evolution �27�. We postulate the
following symmetry properties:

dWij = dW ji,

dVij = − dVji. �40�

The independent increments of the Wiener processes satisfy
the following Itô mnemotechnical rules:

dWii�
���dW j j�

��� = ��ij�i�j� + �ij��i�j���������dt ,

dVii�dVjj� = ��ij�i�j� − �ij��i�j�dt ,

dWii�
���dVii� = 0, �41�

which respect symmetries �40� under particle interchange.
For the amplitudes Aij and Cij of the noises in Eq. �38�, we
select the very specific forms �11�

Aij = �40�

3
kB

TiTj

Ti + Tj

Fij

didj
�1/2

,

Cij = �4�kBTiTj
Fij

didj
�1/2

, �42�

where � is the shear viscosity of the solvent and � is the
thermal conductivity. The geometrical factor Fij is given by

Fij = −
W��rij�

rij
. �43�

This completes the definition of the thermal noises dṽi and

dẼi, as proposed in Ref. �11�. Note that we have assumed for
simplicity that the bulk viscosity of the solvent is zero �11�.
As we showed in Ref. �11�, the above noise terms produce
dissipative dynamics that can be understood as a proper dis-
cretization of the irreversible part of the Navier-Stokes equa-
tion of a fluid with transport coefficients � and �.

We still have to postulate the noise term dc̃i. We assume
that this noise term captures the elementary processes by
which ci changes irreversibly. We will assume that dc̃i is

statistically independent of dṽi and dẼi. Concerning the sto-
chastic changes in ci, we have discussed in Sec. II that a
reasonable assumption for the stochastic properties of the
term dc̃i is given by Eq. �9�.

The total linear momentum P�x�=�imvi is an additional
dynamical invariant I�x� in this model. Its derivatives with
respect to the state variables are

�P

�x
→�

0

m1

0

0
� . �44�

Now, it is a trivial exercise to show that Eq. �A6� in Appen-
dix A, which now takes the form

�
i

mvi · dṽi + dẼi = 0,

�
i

mdṽi = 0, �45�

is exactly satisfied by the noise terms in Eq. �38�, due to
symmetries �40�. In this way, the postulated noises conserve
exactly the energy and momentum. Consequently, the irre-
versible part of the dynamics will also conserve momentum
and energy.

According to Eq. �37�, the matrix M→Mij is given by

�
0 0 0 0

0
dṽidṽ j

T

2kBdt
dṽidẼj

2kBdt
0

0
dẼidṽ j

T

2kBdt

dẼidẼj

2kBdt
0

0 0 0
dc̃idc̃ j

2kBdt

� . �46�

The central diagonal block was computed in Ref. �11� and
the last diagonal element is given by Eq. �9�.
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Now we are in position to write the deterministic irrevers-
ible part of the dynamics ẋ 
irr=M · �S

�x , which will be given by

�
ṙi

v̇i

Ėi

ċi

�

irr

= �
j

Mij�
�
�

� jk
Pk

dk
2Tk

0

1

Tj

� j

Tj

� , �47�

where we have used Eq. �17�. The matrix multiplication
leads readily to the following equations:

ṙ
irr = 0,

mv̇i
irr = −
5�

3 �
j

Fij

didj
�vij + �eij · vij�eij� ,

Ėi
irr =
1

2

5�

3 �
j

Fij

didj
�vij

2 + �vij · eij�2� − 2��
j

Fij

didj
Tij ,

ċi
irr =
2

kBNpTi�
ci · �i, �48�

where we have used Eq. �B4� in Appendix B.
By collecting reversible part �36� and irreversible part

�48�, we end up with the final equations of motion for the
viscoelastic fluid-particle model. They are

ṙi = vi,

mv̇i = �
j
��i

di
2 +

� j

dj
2 � · �ij −

5�

3 �
j

Fij

didj
�vij + �eij · vij�eij� ,

Ėi = −
�i

di
2 :�

j

�ijvij +
1

2

5�

3 �
j

Fij

didj
�vij

2 + �vij · eij�2�

− 2��
j

Fij

didj
Tij ,

ċi
��� =

ci
��

di
�

j

�ij
� vij

�� +
ci

���

di
�

j

�ij
� vij

� +
2

�NdkBTi
ci

���i
���,

�49�

with the reversible stress tensor �i given in Eq. �35�.
In order to close Eq. �49�, we need to know the explicit

functional forms of the thermodynamic conjugate variables
Pi, Ti, and �i in terms of the state variables ri, Ei, and ci.
�Note that the entropy and its derivatives do not depend on
the velocity vi.� Because the thermodynamic conjugate vari-
ables are the derivatives of the entropy, we need the explicit
form of the entropy function. Several forms based on a
Gaussian form of the equilibrium probability distribution

function of the conformation tensor have been proposed in
the literature for the entropy depending on the conformation
tensor �18,28�. Another possible approach to obtain the func-
tional form of the conformation-dependent entropy is to
compute the phase-space integrals involved in Eq. �14�,
which can be analytically computed for the case of a dilute
solution of dumbbells with a Hookean spring law. Note that,
in general, the particular form of the “spring law” modeling
the intradynamics of the polymer molecules appears in the
present model only through the functional form of the en-
tropy. For a dilute solution of Hookean dumbbells, the
configuration-dependent entropy is given by �18�

S�E,c,V� = Ss�E,V� + Sp�c� , �50�

where Ss�E ,V� is the entropy of the solvent and Sp�c� is the
contribution due to the polymers. The functional form for Ss
has to be yet specified. Very simple models �such as the ideal
gas� are used frequently in the SPH literature. For the
Hookean dumbbell model, the functional form of Sp is given
by

Sp�c� = kB
Np

2
�tr�1 − c� + ln det c� . �51�

The intensive parameters defined in Eq. �18� are given by

T = Ts,

� =
Np

2
kBT�c−1 − 1� ,

P = Ps, �52�

where Ts and Ps are the solvent temperature and pressure,
which depend only on the volume, mass, and internal energy
of the fluid particle, and not on the polymer variables c. In
Eq. �52� the Jacobi formula

� ln det c

�c
= c−1 �53�

has been used to compute �. After using the expression of �
we obtain the expressions for the stress tensor

� j = Pj
s1 − nj

pkBTc j , �54�

where ni
p=Npdi=Np /Vi is the number density of polymer

molecules. Also, we have the following expression for the
irreversible change in the configuration tensor in Eq. �48�:

ċi
irr =
1

�
�1 − ci� , �55�

In order to describe finite extensibility of the polymer
molecules, the term tr�1−c� in the entropy function may be
substituted by

��tr c� = b ln�b + 3

3
−

1

b
tr c� , �56�

which leads to the widely used finitely extensible nonlinear
elastic Peterlin �FENE-P� model �18�. In the limit very large
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finite extensibility parameter b→�, we recover Hookean
model �50�. For simplicity reasons only, we restrict ourselves
in the present paper to the Hookean model.

C. Physical meaning of the equations

We discuss now the physical content of Eq. �49�. The first
three equations are very similar to the equations obtained for
the fluid-particle model of a Newtonian fluid in Ref. �11�,
except for the only difference that now we have a more com-
plex form for the reversible stress tensor, given in Eq. �35�.
In addition to the usual diagonal part involving the pressure
of the solvent, we have now an additional term depending on
the conformation tensor that accounts for the stress due to
the nonisotropic distribution of elongations of the micro-
scopic polymer molecules. The second term in the momen-
tum equation is a purely frictional force that tries to reduce
velocity differences between fluid particles. The overall mag-
nitude of this force is governed by the shear viscosity. This
force dissipates energy because it drives the particles toward
the rest state. The kinetic energy of the fluid particles must
be transformed, therefore, into internal energy. This effect is
captured by the second term in the energy equation, which is
a viscous heating term. The last term in the energy equation
tries to reduce temperature differences between fluid par-
ticles. It is a heat conduction term with overall magnitude
given by the thermal conductivity of the solvent. The first
term in the energy equation is the reversible rate of change in
the work made by the reversible forces in the momentum
equation.

The new equation that appears when comparing Eq. �49�
with the SDPD model for a Newtonian fluid �11� is for the
conformation tensor ci. We observe that the first two revers-
ible terms in the equation for ci simply convect the configu-
ration, as if the microscopic polymer molecules were an-
chored with the solvent. Extensions, shears, and
compressions will produce reversible variations in the con-
figuration tensor. Opposed to this effect is the relaxation of
the configuration tensor to its isotropic equilibrium value, for
which �=0. The time scale of this relaxation is given by �.

We observe, therefore, that the above equations are able to
display complex phenomena in which the motion of the par-
ticles is coupled to the inner microstructure of the solution.
Equation �49� conserves total mass, momentum, and energy,
and also satisfies exactly the second law of thermodynamics

�i.e., Ṡ�x��0�. Therefore, it is thermodynamically consistent.

IV. CONTINUUM EQUATIONS

It is possible to show, by following steps similar to those
in Ref. �11�, that discrete equations �49� can be understood as
a particular smoothed particle hydrodynamic discretization
of the following continuum hydrodynamic equations:

�t� = − � · �v ,

�t�v = − � · �vv − � · � + ��2v +
�

3
� �� · v� + �g ,

�t� = − � · �v� + �:�v + 2��v:�v + ��2T ,

�tc = − v · �c + ��v� · c + c · �vT +
2

�nkBT
c · � , �57�

where � is the mass density field, v is the velocity field, � is
the internal energy density field, and the conjugate variables
are now defined as

1

T
=

�s��,c�
��

,

�

T
=

�s��,c�
�c

, �58�

where s�� ,c� is the entropy density �i.e., per unit volume�.
The reversible part of the stress tensor is given by

� = P1 + �� · c + c · �� , �59�

where P is the pressure field of the solvent and

�v = 1
2 ��v + �vT� − 1

3 � · v �60�

is the symmetric traceless part of the velocity gradient tensor.
The total energy and entropy are the continuum counter-

parts of Eqs. �15� and �16�, that is,

E =� dr��r

2
vr

2 + �r� ,

S =� drs��r,cr� . �61�

The above Eq. �57� satisfies �tE=0 and �tS�0. For a
Hookean model for the polymer molecules we have

� =
nkBT

2
�c−1 − 1� ,

� = Ps1 + nkBTc ,

2

�nkBT
c · � =

1

�
�1 − c� �62�

to be substituted into Eq. �57�.
In order to check that the proposed discrete model pro-

duces sensible results, we will perform numerical simulation
in the simplest of the nontrivial version of the viscoelastic
model. In particular, we assume a Hookean entropy and con-
stant temperature. This allows us to obtain simple analytical
flow results. For example, in a stationary homogeneous shear
flow v= ��̇y ,0� �in 2D�, the following solution is obtained for
the conformation tensor:

cxx = 1,

cxy = ��̇ ,

cyy = 1 + 2���̇�2. �63�

Note that cxx−cyy =2���̇�2 and, therefore, the model exhibits
first normal stress differences.
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We may also consider as a second example a stationary
forcing of the fluid, producing the so-called Kolmogorov
flow. We impose an external acceleration g=g0(sin�ky� ,0).
We assume a steady-state solution in which the density,
pressure, and temperature are constant, the velocity field
is modulated according to the forcing, that is, v
=v0(sin�ky� ,0), and c=c�y�. Then � ·v=0 and the continuity
equation is automatically satisfied. The convective terms also
vanish: v ·�v=0 and v ·�c=0. In this way, the momentum
equation leads to the following set of equations:

nkBT
�cxy

�y
− �v0k2 sin�ky� + ��y�g0 sin�ky� = 0,

n
�cyy

�y
= 0. �64�

By inserting the assumed form for the fields in the last equa-
tion in Eq. �57� leads to

cyy = 1,

cxy = �v0k cos�ky� ,

cxx = 1 + 2��v0k�2cos2�ky� . �65�

By using Eq. �65� back in momentum equation �64� we ob-
tain

v0 =
�g0

k2�nkBT� + ��
. �66�

Note that the polymer contribution to the viscosity of the
fluid is nkBT�.

It is possible to obtain also a time-dependent solution
for a sudden application of the external acceleration g
=g0(sin�ky� ,0) on the rest state. The solution of the form
v= ṽ�t�(sin�ky� ,0) and c= c̃�t�c�y� can be found by solving
the linear system of coupled ordinary differential equations
for ṽ�t�, c̃xy�t�, c̃xx�t�, and c̃yy�t� for an initially assigned equi-
librium flow field �i.e., v�y ,0�=0, cxy�y ,0�=0, cxx�y ,0�=1,
and cyy�y ,0�=1�. The result for the velocity component
reads

ṽ�t� = C1e�1t + C2e�2t + v0, �67�

where C1= �2��g0−v0��+	��� / �2	��, C2=−C1−v0, and
�1,2=1 / �2����−��	��, with �=��k2+�, �=�2−4��k2��
+nkBT��, and v0 as the steady-state value given in Eq. �66�.
Note that, depending on the value assumed by �, �1,2 may be
real or complex, leading to overdamped and underdamped
solutions, respectively. However, due to the specific choice
of C1,2 which depends on the initial conditions, the final
value assumed by ṽ�t� in Eq. �67� is always real.

The off-diagonal component of the conformation tensor
c̃xy�t� can be easily obtained in terms of ṽ�t� and it reads

c̃xy�t� = − C1��1� + �k2

nkBTk
�e�1t − C2��2� + �k2

nkBTk
�e�2t

+
�g0 − �k2v0

nkBTk
�68�

and cxy�y , t�= c̃xy�t�cos�ky�. Concerning the diagonal parts,
for the initial condition cyy�y ,0�=1, we have that cyy�y , t�
=1 at every time.

V. SIMULATION OF THE MODEL

In this section we show that the discrete model in Eq. �49�
does actually conform with the predictions of the continuum
model in Eq. �57� with Eq. �62�. We will compare simulation
results with analytical expressions for the two benchmark
tests discussed in Sec. IV, that is, uniform shear and Kolmog-
orov flow. We consider an isothermal equation of state for
the solvent given by the expression for ideal gases, that is,
P��i�=cs

2�i, where cs=kBT /m is the speed of sound for the
solvent and �i=mdi is the solvent mass density. The only
evolution equations for the isothermal fluid-particle variables
in Eq. �49� are the particle-position, momentum, and confor-
mation tensor equations.

The system is defined in a two-dimensional periodic
square box of side L=1 and N=400 fluid particles are ini-
tially placed on a square lattice with zero velocities and sepa-
ration distance �r=L /Nx, where Nx=Ny =20. A quintic spline
interpolation kernel is used with h=�r.

It is possible to define a number of dimensionless param-
eters which characterize uniquely the physics. For the prob-
lems considered here, the relevant ones are: �i� the Mach
number Ma=V /cs, where V is a typical flow velocity; �ii� the
Reynolds number Re=LV /�, where �=� /� is the kinematic
fluid viscosity; and �iii� the Weissenberg number We=�V /L,
which determines the relative importance of elastic effects
over inertial ones.

A. Uniform shear flow

In order to produce a simple shear flow, the common
Lees-Edwards boundary conditions are applied �29�. We
choose units in which the fluid mass density �=1, the sound
speed cs=1, and kinematic viscosity �=1. The relevant input
parameters for this test case are the elastic relaxation time
�=1 and shear rates �̇ given by a range of box velocities V
between 0.005 and 0.5. Accordingly to the previous defini-
tions, Ma, Re, and We span a range of �0.005:0.5� depending
on the selected value of V.

In Fig. 2, the off-diagonal component of the conformation
tensor cxy is plotted versus the dimensionless shear rate ��̇
�Weissenberg number We�. The global component cxy was
obtained by averaging the values assumed by c over all the
particles, that is, cxy = �1 /N��i=1

N cxy
i , where i is the particle

index. Every point in Fig. 2 was extracted from the simula-
tion once the system reached the steady state. The agreement
with the dotted line representing the theoretical expression in
Eq. �63� is excellent.

In Fig. 3 also the averaged normal stress difference coef-
ficient has been plotted in log-log scale and compared with
Eq. �63�. Again, the agreement with the theory is very good,
indicating the accuracy of the particle method for the dis-
cretization of the continuum Oldroyd-B model in a homog-
enous shear situation.
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B. Kolmogorov flow

As mentioned in Sec. IV, another possible test is to
impose a sinusoidal external forcing with an acceleration
given by g=g0(sin�ky� ,0), where g0 is the amplitude of
the acceleration, and k=2� /L. The particles are accelerated
by the external perturbation and eventually achieve a steady
state characterized by the conformation tensor and velocity
field given in Eqs. �65� and �66�. For this specific case, we
chose �=0.02 and cs=1 and tested several values of the
relaxation time �=0.02,2 ,200. g0 was determined in such
a way that v0=0.0002 for all the simulations. Accordingly,
the Reynolds number for this flow is Re=0.01, while
the Weissenberg number assumes several values, i.e.,
We=0.000 004,0.0004,0.04. The resolution Ny corresponds
here to 60 particles spanning the y direction.

Figure 4 shows the steady-state x component of the ve-
locity field Vx as a function of the spatial variable y for
We=0.04. Very good agreement is obtained with the theoret-
ical solution �dotted line�.

Concerning the conformation tensor c, comparisons of the
numerical results with the theoretical ones in Eq. �65� for its

components cxx and cxy are shown, respectively, in Figs. 5
and 6. Again, good agreement is obtained.

In order to test the accuracy of the method for the descrip-
tion of an unsteady flow, comparisons of the SPH simula-
tions have been performed with the time-dependent solutions
reported in Eqs. �67� and �68�. Figures 7–9 show the time-
dependent behaviors of Vx and cxy evaluated at specific
points of the domain for different Weissenberg numbers.
Note that at small We �i.e., We=4�10−6�, the coefficients
�1,2 in the exponents of Eq. �67� are real and, consequently,
the solution corresponds to an overdamped relaxation with-
out oscillations; see Fig. 7. On the other hand, for larger
values of the Weissenberg number, i.e., We=0.0004,0.04,
�1,2 have an imaginary part and therefore an underdamped
solution is obtained; see Figs. 8 and 9.

VI. THERMAL FLUCTUATIONS
IN THE CONFORMATION TENSOR

One of the benefits of a fluid-particle model in the GE-
NERIC form, such as the one presented in this paper, is that
it allows for the introduction of thermal fluctuations in a
natural way. Actually, the noise to dissipation route we have
proposed for the construction of the friction matrix postu-
lates first the form of the noise terms and from these noise
constructs the friction matrix, thus ensuring the symmetric

FIG. 3. Averaged steady-state normal stress difference coeffi-
cient cxx−cyy plotted versus the dimensionless applied shear rate �̇�
in log-log scale.
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FIG. 4. Steady-state velocity field vx plotted versus the y coor-
dinate for We=0.04. Solid line: SDPD; dotted line: theory.FIG. 2. Averaged steady-state off-diagonal component of the

conformation tensor cxy plotted versus the dimensionless applied
shear rate �̇� in log-log scale.
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FIG. 5. Steady-state values of cxx plotted versus the y coordinate
for We=0.04. Solid line: SDPD; dotted line: theory.
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and positive semidefinite character of the friction matrix M.
While we have given explicit forms for the noise terms for

dṽi and dẼi in terms of independent increments of the Wiener
process in Eqs. �38�, we still have to produce an explicit
form of the random term for the conformation tensor dc̃i.
Note that expression �8�, which motivated variance �9� re-
quired to construct the friction matrix, is not a proper sto-
chastic term because the elongations of the polymer mol-
ecules qa are not state variables. What we need is an
expression of the random term dc̃i that, while still producing
correct variances �9�, is given entirely in terms of the state
variable ci.

A first possibility for the formulation of the stochastic
noise dc̃i is �we suppress the fluid-particle index i for clarity�

dc̃�� = �
�
� ��

�Np�1/2
�dũ�

�u�
� + dũ�

�u�
�� , �69�

where �� are the eigenvalues of the tensor c and u� are the
corresponding eigenvectors, that is,

c��u�
� = ��u�

�, �70�

while dũ�
� is a set of independent increments of the Wiener

process with the following variances:

dũ�
�dũ�

� = ������dt . �71�

By using the eigenrepresentation of the conformation tensor

c�� = �
�

��u�
�u�

� , �72�

it is straightforward to show that the stochastic forces defined
in Eq. �69� do actually have the correct variances as given in
Eq. �9�. Note that this formulation of the stochastic force in
the conformation tensor requires the use of nine independent
increments of the Wiener process for each fluid particle �dũ�

�

for �=1,2 ,3 and �=1,2 ,3�.
A second possible formulation for the noise is the follow-

ing. Postulate �for each fluid particle� that
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FIG. 6. Steady-state values of cxy plotted versus the y coordinate
for We=0.04. Solid line: SDPD; dotted line: theory.
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FIG. 7. Time-dependent evolutions of vx and cxy for a Weissen-
berg number We=4�10−6. Circles �� and �� correspond to the
numerical results, whereas lines correspond to the theoretical solu-
tions in Eqs. �67� and �68�. For small values of We, an overdamped
solution describes the evolutions of both velocity field and confor-
mational stress tensor.
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FIG. 8. Time-dependent evolutions of vx and cxy for a Weissen-
berg number We=4�10−4. Circles �� and �� correspond to the
numerical results, whereas lines correspond to the theoretical solu-
tions in Eqs. �67� and �68�.
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FIG. 9. Time-dependent evolutions of vx and cxy for a Weissen-
berg number We=4�10−2. Circles �� and �� correspond to the
numerical results, whereas lines correspond to the theoretical solu-
tions in Eqs. �67� and �68�.
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dc̃�� = �
�
�4��

�Np�1/2

d�̃�u�
�u�

� , �73�

where d�̃� is an independent increment of the Wiener pro-
cess that has the following variance:

d�̃�d�̃� = ���dt . �74�

In this case the variance is given by

dc̃��dc̃���� = �
�

4��

�Np u�
�u�

�u�
��u�

��dt . �75�

The friction matrix element corresponding to the conforma-
tion tensor is, therefore �see Eq. �46��,

M������ =
dc̃��dc̃����

2kBdt
= �

�

2��

�NpkB
u�

�u�
�u�

��u�
��. �76�

This element of the friction matrix is given, in fact, by

M������ =
1

2�NpkB
�c������� + c�������

+ c������� + c�������� . �77�

The proof is immediate when we contract Eqs. �76� and �77�
with the eigenvectors ua

�, ub
�, ua�

��, and ub�
�� and observe that

identical results are obtained in each case. Because the com-
ponents of the fourth-order tensors M������ coincide in a
particular basis, they are identical.

The fact that two different noise terms �in Eqs. �69� and
�73�� lead to the same variance should not come as a surprise
�30�. There are many different nonsquare matrices that when
multiplied lead to the same square matrix. The second for-
mulation in Eq. �73� is preferred computationally because it
requires the generation of only three random numbers in-
stead of nine for each fluid particle, and it is the one selected
in the following.

A. Eigendynamics of the conformation tensor

In this subsection, we present the dynamics of the confor-
mation tensor in terms of the dynamics of its eigenvalues and
eigenvectors. Note that the construction of the random term
dc̃i in the conformation tensor in Eq. �73� requires the knowl-
edge of the eigenvectors, and we have to diagonalize the
conformation tensor. This suggests that it may be profitable
to formulate the dynamics directly in terms of the eigenval-
ues and eigenvectors of the conformation tensor. In fact, this
strategy was followed in Refs. �31,32� in order to improve
problems that may arise due to the loss of the positive char-
acter of the conformation tensor, due to purely numerical
errors.

By taking the time derivative of eigenrepresentation �72�
of the conformation tensor and left and right multiplying this
time derivative with the eigenvectors, we obtain

u� · ċ · u� = ����̇� + ��� − ���u̇� · u�, �78�

where we have used the orthogonality of the eigenvectors in
the form d

dt �u� ·u��=0.

We assume that the conformation tensor evolves accord-
ing to the last equation in Eq. �49� �no particle index shown
for simplicity�

ċ = c · � + �T · c +
2

�NpkBT
c · � . �79�

If we left and right multiply Eq. �79� with the eigenvectors,
we obtain

u� · ċ · u� = ����� + ����� +
2

�NpkBT
�������, �80�

where we have introduced the matrix element of the velocity
gradient tensor in the eigenbasis of the conformation tensor,

��� � u� · � · u�. �81�

We have also introduced ��=u� ·� ·u�, which are the eigen-
values of �. As shown in Appendix B, � and c diagonalize
in the same basis.

By equating Eqs. �78� and �80� we obtain the following
evolution equations for the eigenvalues and eigenvectors:

�̇� = 2����� +
2

�NpkBT
����,

u̇� = �
�

H��u�, �82�

where the antisymmetric matrix H�� is given by

H�� = � 1

�� − ��

������ + ������ if �� � ��

��� if �� = ��.
 �83�

For Hookean dumbbells the equation for the eigenvalues be-
comes

�̇� = 2����� +
1

�
�1 − ��� , �84�

while the equation for the eigenvector remains the same.
Equations �79� and �82� are mathematically equivalent.

Note that, apparently, from the 6 equations and unknowns
involved in the symmetric tensor Eq. �79� in 3 dimensions
�3D�, we have now 12 equations and 12 unknowns in Eqs.
�82� �3 eigenvalues and the 3 components of the three eigen-
vectors�. However, we should note that the eigenvectors are
orthogonal, which means that, in addition, u� ·u�=���.
These are 6 constraints that reduce the number of indepen-
dent unknowns to 6, as it should. In the remaining of the
paper, we solve the eigendynamics given by Eqs. �82�–�84�
instead of Eq. �79� and observe a sufficient degree of ortho-
normality for the eigenvectors. We suggest a possible im-
provement in Appendix C.

B. Stochastic eigendynamics

Given a deterministic dynamic equation of the GENERIC
form, we know how to construct a corresponding stochastic
differential equations �SDE� that fulfils the fluctuation-
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dissipation theorem, as shown in Appendix A. In order to
construct the SDE that corresponds to the deterministic equa-
tions Eq. �49�, we first consider the stochastic equations that
would be obtained if the backcoupling between the confor-
mation tensor and the fluid variables were neglected. In that
case, the only equations to be considered would be Eq. �79�
and �82�, where ��� can be understood as an “external ve-
locity gradient.” By realizing that for the discussion of the
introduction of thermal fluctuations only the irreversible part
is required �through the fluctuation-dissipation theorem,
there is noise only when there is dissipation�, we consider the
irreversible part of Eq. �82�, which can be written as

�̇�
irr =
2��

�NpkB

�S

���

. �85�

Note that this deterministic equation is of the form ẋ
=M�x� �S

�x , with M�x�→�� /�NpkB. From Appendix A, we ob-
serve that the corresponding Itô stochastic equation is

dx
irr = M�x�
�S

�x
dt + kB

�M

�x
dt + dx̃ , �86�

with dx̃dx̃=2kBM�x�dt. For the case of the dynamics of the
eigenvalues, general SDE �86� corresponding to determinis-
tic equation �85� is

d��
irr =
2��

�NpkB

�S

���

dt +
2

�Npdt + �4��

�Np�1/2

d�̃�, �87�

where the independent increments of the Wiener process,

d�̃�, satisfy Eq. �74�.
By adding the purely reversible part of the dynamics to

the above irreversible dynamics, we obtain

d�� = 2�����dt +
2

�NpkB
��

�S

���

dt +
2

�Npdt + �4��

�Np�1/2

d�̃�,

du� = �
�

H��u�dt . �88�

By using Eq. �72�, it is straightforward to show that this Eq.
�88� leads to the following SDE for the conformation tensor:

dc = �c · � + �T · c�dt +
2

�NpkBT
c · �dt +

2

�Np1dt + dc̃ ,

�89�

where dc̃ is given by Eq. �73�. This is the SDE equation that
corresponds to the deterministic last equation in Eq. �49�.

C. Complete stochastic equations

The final SDEs are obtained by adding the noise terms in
Eqs. �38� and �73� to deterministic equations �49�. Note that
the usual Itô term of the form kB

�M
�x that should be included

in the GENERIC SDE �see Appendix A� produces negligible
contributions on the order of kB /Ci=1 /Ns in the momentum
and energy equations. Ci is the heat capacity of the fluid
particle which, in turn, is on the order of NskB, where Ns is
the �very large� number of solvent atoms within the fluid

particle. However, the Itô term kB
�M
�x does actually have a

non-negligible contribution in the equation for the conforma-
tion tensor. This term can be computed from Eq. �77� with
the simple result

kB
�M

�x
→

2

�Np1 , �90�

which is clearly displayed in Eq. �89�.
In summary, the stochastic model for viscoelastic fluid

particles is given by the following set of SDEs:

dri = vidt ,

mdvi = �
j
��i

di
2 +

� j

dj
2 � · �ijdt −

5�

3 �
j

Fij

didj
�vij

+ �eij · vij�eij�dt + mdṽi,

dEi = −
�i

di
2 :�

j

�ijvijdt +
1

2

5�

3 �
j

Fij

didj
�vij

2 + �vij · eij�2�dt

− 2��
j

Fij

didj
Tijdt + dẼi,

d�� = 2�����dt +
2

�NpkB
��

�S

���

dt +
2

�Npdt + �4��

�Np�1/2

d�̃�,

du� = �
�

H��u�dt , �91�

where � is given by Eq. �35� and c is given by Eq. �72�.

D. Equilibrium fluctuations

Associated to the above SDE there exists a mathemati-
cally equivalent Fokker-Planck equation �FPE�, which in
general has the structure shown in Eq. �A7� of Appendix A.
The equilibrium solution of this FPE gives the Einstein equi-
librium probability given in Eq. �A8�. By integrating over all
degrees of freedom, except one of the eigenvalues of the
conformation tensor of a single fluid particle, we obtain the
following marginal equilibrium distribution function:

P��� =
1

N
exp�Sp���

kB
� , �92�

where Sp is the entropy defined in Eq. �51� and N is a nor-
malizing constant. It is apparent that the entropy in Eq. �51�
should depend on the configuration tensor only through its
eigenvalues. In fact, for the Hookean dumbbell model, Eq.
�51� implies

Sp�c� = kB
Np

2 �D − �
�

�� + �
�

ln ��� . �93�

Therefore, the probability distribution in Eq. �92� for the
eigenvalues is
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P���� =
1

N
��

Np/2 exp�−
Np

2
��� . �94�

It is apparent that the width of this distribution function nar-
rows with increasing number Np of polymers within a fluid
particle. In general, for a fixed concentration of polymers,
the number Np of polymer molecules will increase with the
size of the fluid particles. As a consequence, the effect of
thermal fluctuations in the configuration tensor �and, there-
fore, in the rest of the dynamics� will be reduced as the fluid
particles are larger. This effect of switching off thermal fluc-
tuations by using larger fluid particles has been discussed
recently in the SDPD model for Newtonian fluids �20�.

We have run a simulation of Eq. �91� in an equilibrium
state �no forcing in a periodic box�. We have binned the
values of the eigenvalues realized during the simulation and
computed the histogram in Fig. 10. The agreement with Eq.
�94� is excellent. We also show in Fig. 11 the stochastic time
evolutions of the component cxy in a startup from rest of a
Kolmogorov flow, for different numbers Np of polymer mol-
ecules within the fluid particle �fluctuations on the momen-
tum and energy are switched off for simplicity�. We have
explicitly checked that the error in the degree of orthonor-
mality for the eigenvectors remains confined below a certain
small level, i.e., 1% over all the run. We observe that as the
number of polymer molecules is increased, the fluctuations
in the configuration tensor decrease accordingly. This is what
has to happen in order to respect the idea that as the size of
the fluid particles increases, for constant concentration of
polymers, the effect of thermal fluctuations must decrease, in
accordance with a basic statistical-mechanics principle.
However, in microscopic conditions as those represented by
microrheology, such fluctuations may play a crucial role in
the dynamics and they are consistently taken into account by
the model.

VII. CONCLUSION

We have formulated a fluid-particle model for the simula-
tion of dilute polymer solutions in which for each fluid

particle a conformation tensor variable is introduced. Thanks
to the clear physical definition of the conformation tensor in
“microscopic” terms in Eq. �1�, the use of the conformation
tensor, as opposed to other formulations of viscoelastic flow
based on constitutive equations for the stress tensor, allows
for a simple introduction of thermal fluctuations. The formu-
lation of the model following the GENERIC framework en-
sures that the model is thermodynamically consistent. The
model is based on a previous fluid-particle model valid for
Newtonian fluids, to which it reduces in the limit of zero
polymer concentration. The resulting model can be under-
stood as a smoothed particle hydrodynamic discretization of
the continuum equations for a viscoelastic fluid. Note, how-
ever, that there are many different ways of discretizing the
equations by following the SPH philosophy. The GENERIC
framework guides toward a proper discretization that re-
spects the first and second laws of thermodynamics exactly.
We have conducted simulations in simple fluid flows to
check that the predictions of the continuum model are ful-
filled in the simulations. Although we have considered in the
simulations only isothermal situations, the model may deal
with temperature gradients, viscous heating, and related ther-
mal phenomena.

One of the main contributions of the present paper is the
introduction of thermal fluctuations in the viscoelastic fluid-
particle model. In the Newtonian fluid-particle model, mo-
mentum and energy fluctuations are introduced through the
fluctuation-dissipation theorem, and they can be understood
as the stochastic contributions introduced by Landau and Lif-
shitz �33� in fluctuating hydrodynamics. In a viscoelastic
fluid, additional fluctuations in the conformation tensor may
play an important role. The coupling of the present fluid
viscoelastic fluid with colloidal particles in suspension is
under consideration and will be the subject of a future pub-
lication.
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FIG. 11. �Color online� Time evolution of the off-diagonal com-
ponent of the configuration tensor in a startup from rest of a Kol-
mogorov flow. For a given size of fluid particles, the evolution of
the configuration tensor depends strongly on the number Np of
polymer molecules that are within the fluid particle. Few polymer
molecules imply large fluctuations.
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FIG. 10. Equilibrium histogram of eigenvalues of the conforma-
tion tensor compared with the theoretical result in Eq. �94�.
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APPENDIX A: REVIEW OF GENERIC

In this appendix, and for the sake of completeness, we
review the GENERIC framework �18�.

The state of a system at a given level of description is
described by a set of variables that form a vector x. The
energy and the entropy are two of the basic building blocks
of the GENERIC formalism and they should be expressed as
functions of the state variables at the given level of descrip-
tion. The GENERIC dynamic equations are given by

dx

dt
= L ·

�E

�x
+ M ·

�S

�x
. �A1�

The first term in the right-hand side is named the reversible
part of the dynamics and the second term is named the irre-
versible part. The predictive power of GENERIC relies on
the fact that very strong requirements exist on the matrices L
and M, leaving relatively small room for the physical input
about the system. First, L is antisymmetric, whereas M is
symmetric and positive semidefinite. Most importantly, the
following degeneracy conditions should hold:

L ·
�S

�x
= 0, M ·

�E

�x
= 0. �A2�

These properties ensure that the energy is a dynamical in-

variant, Ė=0, and that the entropy is a nondecreasing func-

tion of time, Ṡ�0, as can be proved by a simple application
of the chain rule and equations of motion �A1�. In the case
that other dynamical invariants I�x� exist in the system �such
as, for example, linear or angular momentum�, then further
conditions must be satisfied by L and M. In particular,

�I

�x
· L ·

�E

�x
= 0,

�I

�x
· M ·

�S

�x
= 0, �A3�

which ensure that �̇=0.
Deterministic equations �A1� are, actually, an approxima-

tion in which thermal fluctuations are neglected. If thermal
fluctuations are not neglected, the dynamics is described by
the following stochastic differential equations �34�:

dx = �L ·
�E

�x
+ M ·

�S

�x
+ kB

�

�x
· M�dt + dx̃ , �A4�

to be compared with the deterministic equations �A1�. The
deterministic additional term involving the Boltzmann con-

stant kB appears due to the stochastic interpretation of the
equation which is taken to be the Itô interpretation. The sto-
chastic term dx̃ in Eq. �A4� is a linear combination of inde-
pendent increments of the Wiener process. It satisfies the
mnemotechnical Itô rule

dx̃dx̃T = 2kBMdt , �A5�

which means that dx̃ is an infinitesimal of order 1/2 �30�.
Equation �A5� is a compact and formal statement of the
fluctuation-dissipation theorem.

In order to guarantee that the total energy and dynamical
invariants do not change in time, a strong requirement on the
form of dx̃ holds,

�E

�x
· dx̃ = 0,

�I

�x
· dx̃ = 0, �A6�

implying the last equations in Eqs. �A2� and �A3�. The geo-
metrical meaning of Eq. �A6� is clear. The random kicks
produced by dx̃ on the state x are orthogonal to the gradients
of E and I. These gradients are perpendicular vectors �strictly
speaking they are one forms� to the hypersurface E�x�
=E0 , I�x�= I0. Therefore, the kicks let the state x always
within the hypersurface of dynamical invariants.

The FPE that is mathematically equivalent to the GE-
NERIC SDE is given by

�P�x,t�
�t

= −
�

�x
· �L�x� ·

�E

�x
P�x,t� + M�x� ·

�S

�x
P�x,t��

+ kB
�

�x
· M�x� ·

�

�x
P�x,t� . �A7�

The equilibrium distribution function which is the solution of
the Fokker-Planck equation �provided that the boundary con-
ditions permit this solution� is given by the Einstein formula
for fluctuations, suitably modified for the presence of dy-
namical invariants �35�,

P�x�eq =
1

N
��E�x� − E0���I�x� − I0�exp�S�x�

kB
� , �A8�

where N is a normalization constant. The proof that Eq. �A8�
is actually the equilibrium solution of Eq. �A7� makes use of
the degeneracy conditions �in the form of Eq. �6.76� of Ref.
�18��, and the antisymmetry of L.

APPENDIX B: PROPERTIES OF �

In this appendix we show several results concerning the
intensive parameter � defined as proportional to the deriva-
tive of the entropy with respect to the conformation tensor in
Eq. �18�.

First, consider the following remarkable identity:

���

�c�� = u�
�u�

� , �B1�

which relates the derivatives of the eigenvalue with respect
to the components of the conformation tensor with the eigen-
vectors. This identity �B1� is easily demonstrated by taking
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the derivative of eigenequation �70� with respect to each
component c�� of the conformation tensor.

Next, consider a function such as the entropy that depends
on the conformation tensor only through its eigenvalues.
�Note that the invariants Tr c=���� and det c=���� are
simple functions of the eigenvalues.� In this case, the deriva-
tive of the entropy with respect to the conformation tensor
takes the form

�S

�c�� = �
�

�S

���

u�
�u�

� , �B2�

where we have used the chain rule and Eq. �B2�. Equation
�B2� implies that u� is an eigenvector of the matrix �

T = �S
�c

with eigenvalue �S
���

. Therefore, � diagonalizes on the same
basis as c and the eigenvalues �� of � are given by

��

T
=

�S

���

. �B3�

Equation �B2� also implies that

� · c = c · � . �B4�

This is easily proved from

�S

�c��c��� = �
�

�S

���

��u�
�u�

��,

c�� �S

�c���
= �

�

�S

���

��u�
�u�

��, �B5�

which are identical.

APPENDIX C: CAYLEY PARAMETRIZATION

Instead of solving nine of Eq. �82� that give the dynamics
of the eigenvectors, we may reduce by a factor of 3 the
number of equation to be solved, through the Cayley param-
etrization of orthogonal matrices. Any orthogonal matrix U
which does not have −1 as eigenvalue can be expressed as
U= �1+A��1−A�−1 for some suitable antisymmetric matrix
A �which in 3D has only three independent elements�. The
matrix A is expressed in terms of U as A= �U+1�−1�U−1�. If
the orthogonal matrix U has as columns the eigenvectors of
the conformation tensor c, then dynamic equation �82� for
the eigenvectors translates into the following equation for the
orthogonal matrix U:

dU

dt
= HU , �C1�

where the component of H are given in Eq. �83�. Through
the Cayley parametrization, the dynamic equation for the an-
tisymmetric matrix A is

dA

dt
= �1 − A�H�1 + A��1 − A�−1�1 + A� , �C2�

which despite its appearance is a simple set of three nonlin-
ear differential equations, one for each component of A. Re-
constructing the eigenvectors from the Cayley transforma-
tion ensures its orthogonality and allows to construct a well-
defined �symmetric and positive definite� conformation
tensor through Eq. �72�. The formulation above using the
antisymmetric matrix A differs from the formulation in Ref.
�32� and it may be computationally more efficient because
�in 3D� it solves three differential equations instead of the
nine differential equations required for the eigenvalues.
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